

US Navy Wastewater Membrane Treatment Systems

Presented At:

Interagency Consortium on Desalination and Membrane Separation Research

6-8 January 2004

David Shen Naval Sea Systems Command, Carderock Division

Outline

- Magnitude of Navy Wastewater
- Graywater and blackwater
 - Background
 - Current Projects
- Oily waste water
 - Background
 - Current Projects

January 2004

Magnitude of Navy Ship Wastewater

Blackwater (human wastes)

- 3 gallons/day/person
- 12,300 gallons/day on cruiser (CG-47, gravity flush), 1,200 gallons/day on destroyer (DD-963, vacuum collected)
- 189,000 gallons/day on aircraft carrier (CVN-68) with gravity flush

Graywater (drains from showers, sinks, scullery, etc.)

- 30-50 gallons/day/person
- 12,000 gallons/day on cruiser (CG-47) & destroyer (DD-963)
- 189,000 gallons/day on aircraft carrier (CVN-68)

Oily wastes (function of ship design & mission)

- Bilgewater
 - <2,000 gallons/day for new destroyer (DDG-51)
 - 5,000 gallons/day for cruiser (CG-47) & other destroyer (DD-963)
 - 20,000-50,000 gallons/day for aircraft carrier (CVN-68)
- Ballast water from compensated fuel ships
- Waste oil

NAVSEA Carderock Blackwater and Graywater Treatment Program

Background

- For the past several years, NSWCCD has been making efforts in the research, development, testing and evaluation (RDT&E) of graywater and graywater/blackwater treatment systems
- RDT&E goals
 - Biochemical Oxygen Demand (BOD₅): <50 mg/L
 - Total Suspended Solids (TSS): <100 mg/L
 - Fecal Coliform (FC): <200 cfu/100 mL
- Laboratory, pierside and shipboard evaluations evaluated membrane bioreactors with multiple purposes
 - Early tests to evaluate potential of membrane bioreactors for US Navy use
 - Recent tests performed on membrane bioreactors to validate a performance specification currently in development to serve as a standard for commercial systems to meet
 - FY04: shipboard and laboratory testing and evaluation of commercial systems against performance standard

Laboratory Facility

3000+ gal/day wastewater 15000 gal+ wastewater holding ~40 ft x 12 ft available space

Basic Schematic of a Membrane Bioreactor

Laboratory Evaluations: Developmental Membrane Bioreactor

Laboratory Developmental Graywater Treatment Unit (DGTU) operated in preparation for shipboard system

Test Duration: 6 months continuous

Process Rate Achieved: 3000 gal/day

Dimensions: 15' L x 8.3' W x 8.8' H

Weight: 38,000 lbs. wet

Shipboard Developmental Graywater Treatment Unit (DGTU) Evaluation

Shipboard Evaluation

- Objectives: Demonstrate 6-month operation without operator intervention or maintenance, process at rated system capacity, and meet effluent quality goals
- Developmental Graywater Treatment Unit installation on USS BONHOMME RICHARD (LHD 6) completed in June 2001
- System virtually identical to laboratory Developmental Graywater Treatment Unit, with remote lift stations installed to collect and deliver graywater (galley, laundry, showers and sinks)
- Evaluation conducted over Jun 2001 Sep 2002
- Evaluation included 6-month overseas deployment

Shipboard Developmental Graywater Treatment Unit on the LHD-6 Amphibious Assault Ship

Combined Graywater/Blackwater Membrane Bioreactor Evaluation for Performance Specification Development

Purpose

- A performance specification is currently being written based on results of past laboratory, pierside and shipboard testing
- Laboratory validation of the performance specification necessary to ensure that the Navy has a standard test method to evaluate commercial systems
 - Validation testing performed on the Developmental Non-oily Wastewater Unit (DNTU)
- Developmental Non-oily Treatment Unit (DNTU)
 - Modified from Developmental *Graywater* Treatment Unit (DGTU):
 - o Tall bioreactor for combined blackwater and graywater treatment
 - Aeration feedback loop to reduce foaming
 - Solids feedback loop for automatic wasting
 - Membrane scouring equipment
 - o Flat sheet membranes

Laboratory Developmental Non-Oily Wastewater Treatment Unit

Future Directions for Graywater/Blackwater

- Performance specification development and refinement
 - Performance specification will be updated from the lessons learned in the validation test
 - Application of performance specification to testing and evaluation of commercial systems
 - o Macerator/chlorinator systems
 - Membrane bioreactors
 - o Other biological, physical/chemical and advanced oxidation systems
- Further development of commercial-off-the-shelf database of wastewater treatment systems that compile key parameters for US Navy use
 - Performance
 - Feasibility in US Navy vessel environment
 - Cost

NAVSEA Carderock Oily Wastewater Treatment Program

Oily Waste Performance Problem Definition

- Improved ship design and bilgewater management practices have produced "dry bilge" ships
 - Reducing waste generation and bilge maintenance
 - Producing higher concentrations of bilge contaminants (detergents, AFFF, solids, etc.) and small oil droplets
- Increased contaminant concentrations in "dry bilge" can present challenges to current Navy parallel-plate separators

• Goal:

- Develop a secondary treatment system to reliably achieve 15 ppm oil discharge limit without recycling
- Reduce shoreside disposal costs and shipboard manning requirements

Technology Selection

- Multiple market surveys have identified several technologies to treat bilgewater aboard US Navy and Commercial ships
- Density (parallel plate) separation and ultrafiltration membrane technology selected for staged treatment system:
 - Density separation does an excellent job removing "bulk" oil
 - Ultrafiltration membranes selected for secondary treatment
 - o Membranes very good at removing small, "emulsified" oil droplets
 - Both technologies resistant to chemical variations found in bilgewater
- Two technologies work well together, matching strength of one technology to weakness of other, resulting in a robust system
 - Reduce overall oil pollution abatement (OPA) system maintenance/manning requirements

Initial membrane evaluations

- Initial small-scale membrane comparison demonstration conducted at Naval Weapons Station Earle
 - Membranes processed oily waste from ships stationed at Earle
 - Ceramic membranes demonstrated chemical inertness and high fouling resistance
 - Polymeric membranes integrity failed with exposure to high level of bilgewater contaminant (acetone)
- Cross-flow ceramic ultrafiltration membranes identified as having the best potential

Oily Waste Membrane System Diagram

10 GPM Oily Waste Membrane Systems

- Two 10 gpm oily waste membrane systems have been successful demonstrated shipboard: a Prototype system aboard USS CARNEY (DDG 64) and an Engineering Development Model (EDM) aboard USS RUSHMORE (LSD 47)
 - Fully automatic operation, operating in series with parallel-plate oil / water separator
 - 100:1 volume reduction of oily waste

NAVSTA Mayport authorized ship to discharge overboard in port

Test Results USS CARNEY (DDG 64)

- Processed oil-water separator (OWS) effluent for over 70 months
 (700 hours of membrane system operation)
- Consistently met 15 ppm oil discharge limit (average of 3.5 ppm)
- Membrane replacement interval ~ 5 yrs expected
- Regeneration interval 15 months

Status

- Continuing to evaluate regenerated membranes
- Membrane systems currently installed or being procured for DDG 89 & follow, in addition to LPD 17

Prototype 50 GPM Oily Waste Membrane System

- A prototype 50 GPM oily waste membrane system has been developed, based closely on the 10 gpm systems, to demonstrate a full-scale shipboard system and provide input to a 50 gpm membrane system performance specification
- Currently undergoing shipboard evaluation aboard USS IWO JIMA (LHD-7)
- Approximately 1 million gallons of oil-water separator (OWS) effluent processed so far with no effluent problems

Characteristics:

•System Flow rate: 50 gpm

•# of ceramic membranes: 12

•Power required: 50 Hp

•Modular design: 70 ft²

Features:

- •Self-Cleaning strainer
- •Modular construction to facilitate installation

January 2004

Fleet Procurement

• Successful demonstrations aboard CARNEY and RUSHMORE have yielded performance specifications based procurements for three ship designs

- **DDG 51**

 Membrane systems currently installed or being procured for DDG 89 and follow (24 ships)

- <u>LPD 17</u>

o LPD 17 (7 ships), contract awarded, ship construction near completion

- CVN 77

Contract awarded, installation underway

Nonporous Membrane

- Membrane acquisition costs and fouling rates have a direct impact on membrane system lifecycle costs
- Membrane and Technology Research, Inc. (MTR) has developed a nonporous polymer coating
 - Excellent resistance to a wide range of pH and wastewater contaminants
 - Reduces surface and internal fouling of membranes

Nonporous Membrane Technology

Conventional Finely Porous Membrane

Composite Membrane with Nonporous MTR Coating

Polymeric Nonporous Membrane

- Membrane and Technology Research, Inc. performed testing on a polymeric spiral-wound membrane
 - Potential to perform equivalent to ceramic membranes
 - Polymeric membrane costs less than ceramic membranes
- Reduce acquisition costs of membrane system
 - Improve fouling resistance of membranes
 - Low cost membranes

Nonporous Membrane Demonstration – Upcoming Studies

- Evaluation of coated commercial ceramic membranes
 - Demonstrate the feasibility and effectiveness of coating in the laboratory
 - Demonstrate the improved fouling resistance and process reliability in fullscale shipboard evaluations
- Evaluation of redesigned polymeric spiral-wound modules
 - Design spiral-wound modules compatible to NAVSEA open systems architecture
 - Demonstrate long-term system performance

Test Site – Carderock Small-scale Evaluation Test Loop

Results of Small-scale Ceramic Membrane

- Sample analysis results
 - Permeate <5 ppm (mg/L), 2 samples
 - Feed ~100 ppm (mg/L), 2 samples

Organic Breakthrough

Sample	Benzene		Toluene		Ethyl- Benzene		Xylene, Total		Oil and Grease	
Molecular weight	78.11		92.06		106.07		106.17			
	Feed	Perm	Feed	Perm	Feed	Perm	Feed	Perm	Feed	Perm
Average (BTEX – ppb, O&G - ppm)	50	31	193	92	133	35	655	178	4500	4
Efficiency	37%		52%		74%		73%		99.9%	

- Measured permeate for BTEX (benzene, toluene, ethyl-benzene and xylenes) organics to determine efficiency of removal
 - The coated membrane processed a high concentration of synthetic bilgewater at the operating parameters of the membrane system
- BTEX organic concentrations were reduced
 - Efficiency increased as molecular weight increased

Future Developments - Technology Improvements

- Membrane acquisition costs and fouling rates have a direct impact on membrane system lifecycle costs
- Lower cost
 - In-tank membranes cost approximately \$16,000 to \$18,000 for a 3,000 gal/day graywater treatment system
 - Full-scale ceramic membranes cost approximately \$65/sq.ft.
 - o 300 sq.ft. required for 10 gpm (oily waste treatment system)
 - Reduce membrane cross-flow/aeration rate
 - o Reduce number of pumps necessary for cross-flow
 - Simplify membrane system
- Reduce fouling (see ESTCP)
 - Increase time between chemical cleanings
 - Improve surface area to volume ratio